NORENA ArnaudIMG_2255

DR2 (CNRS) : Responsable d’équipe (Team Leader)



Contacts :

email : arnaud.norena@univ-amu.fr
Phone : +33(0)413550865


Thèmatiques de recherche :
Mon sujet d’étude principal est de comprendre comment les informations acoustiques sont représentées dans les centres auditifs, dans le cas « normal » et lorsque les entrées sensorielles sont modifiées à court- ou long-terme par diverses manipulations. En particulier, je m’intéresse à la plasticité de ces représentations centrales lorsque l’organe sensoriel de l’audition (la cochlée) est endommagé (perte auditive cochléaire) et/ou lorsque l’environnement sensoriel est modifié (enrichi ou appauvri). Enfin, la perte auditive cochléaire, en association ou non avec des modifications plastiques des centres auditifs, peuvent être à l’origine de perceptions « aberrantes » telles que les acouphènes (sifflements/bourdonnements d’oreille) et l’hyperacousie (hypersensibilté auditive). Une grande partie de ma recherche est dévolue à tenter de comprendre les mécanismes de ces perceptions aberrantes et à proposer et tester des approches thérapeutiques originales et efficaces chez l’homme.

Ces différentes questions sont abordées à partir de techniques diverses, à savoir :
– Les potentiels d’action composites (réponses du nerf auditif)
– Les potentiels évoqués auditifs précoces (réponses du nerf auditif au colliculus inférieur)
– L’électrophysiologie multi-unitaire à partir de matrices d’électrodes (réponses des centres auditifs en termes de potentiels d’action)
– L’imagerie optique à colorant sensible au voltage (activité corticale reflétant le potentiel de membrane de populations neuronales)
– Psychoacoustique (relations entre un stimulus et la perception qu’il évoque).


Research themes
My main interest is to understand how acoustic stimuli are represented in the central auditory system in the “normal” case and when sensory inputs are modified. In particular, I am interested in the plasticity of the auditory system triggered by cochlear damages and/or manipulating the acoustic environment. In this context, it has been suggested that cochlear damages, together (or not) with central plasticity, can produce aberrant perceptions, such as tinnitus (ringing in the ears) and hyperacusis (auditory hypersensitivity). An important part of my research is devoted to understanding the mechanisms of these aberrant perceptions and to develop and test therapeutical approaches in tinnitus subjects.

These questions are addressed from different methods, namely:
– Compound action potential (response of the cochlear nerve)
– Auditory brainstem responses (responses from the cochlear nerve to the inferior colliculus)
– Multi-unit recording in auditory centers from matrix of electrodes
– Voltage-sensitive dye imaging optical imaging (membrane potential from populations of cortical neurons)
– Psychoacoustic (relationships between stimulus and perception)


Corrélats corticaux de l’analyse en flux (Cortical correlates of auditory streaming):

La figure ci-dessous représente l’activité corticale évoquée par plusieurs séquences de stimulation et obtenue à partir de l’imagerie optique à colorant sensible au voltage. Les séquences acoustiques sont composées de deux sons purs “A” et “B” joués en alternance et séparés en fréquence par 0 octave, 1/12 octave, 1/4 octave, 3/4 octave et 3/2 octaves.

The figure below shows the cortical activity produced by different acoustic sequences and derived from voltage-dye sensitive imaging. The acoustic sequences are composed of two tone pips played alternately and separated in frequence by 0 octave, 1/12 octave, 1/4 octave, 3/4 octave et 3/2 octaves.

Figure2

Figure2

From Farley and Norena, Journal of Neurophysiology, 2015


Effets d’une stimulation électrique extra-cochléaire sur l’activité spontanée centrale (Effects of an extra-cochlear electric stimulation on the central spontaneous activity):

La bande du haut représente un enregistrement de l’activité spontanée (potentiels d’action) dans le colliculus inférieur. La bande du milieu représente un enregistrement de l’activité neuronale pendant et après une stimulation électrique extra-cochléaire négative. La bande du bas représente un enregistrement de l’activité neuronale pendant et après une stimulation électrique extra-cochléaire positive. On note que la stimulation électrique extra-cochléaire négative augmente l’activité neuronale centrale alors que la stimulation postive la réduit. Cette méthode est à l’étude chez l’homme pour supprimer les acouphènes.

The first row shows a recording of spontaneous activity (action pogentials)recorded in inferior colliculus. The second row shows the activity of the same unit during and after an extra-cochlear electric stimulation with a negative current. The third row shows the activity of the same unit during and after an extra-cochlear electric stimulation with a positive current. One notes that the negative stimulation enhances the neural activity and the positive stimulation suppresses the neural activity. We are studying these effects of this approach on tinnitus subjects.

MATLAB Handle Graphics

MATLAB Handle Graphics

From Norena et al., Journal of Neurophysiology, 2015


Publications

Noreña AJ. Revisiting the cochlear and central mechanisms of tinnitus and therapeutic approaches. Audiol Neurootol. 2015;20 Suppl 1:53-9.

Montejo N, Noreña AJ. Dynamic representation of spectral edges in guinea pig primary auditory cortex. J Neurophysiol. 2015 Apr 1;2.

Noreña AJ, Mulders WH, Robertson D. Suppression of putative tinnitus-related activity by extra-cochlear electrical stimulation. J Neurophysiol. 2015 Jan 1;113(1):132-43.

Catz N., Norena A. Enhanced representation of spectral contrasts in the primary auditory cortex. Front Syst Neurosci. 2013 19;7:21.

Hebert S, Fournier P and Norena A. The auditory sensitivity is increased in tinnitus ears. J Neurosci. 2013 Feb 6;33(6):2356-64.

Farley B and Norena AJ. Spatiotemporal coordination of slow-wave ongoing activity across auditory cortical areas. J Neurosci. 2013 Feb 20;33(8):3299-310

Vanneste S, van Dongen M, De Vree B, Hiseni S, van der Velden E, Strydis C, Joos K, Norena A, Serdijn W, De Ridder D. Does enriched acoustic environment in humans abolish chronic tinnitus clinically and electrophysiologically? A double blind placebo controlled study. Hear Res. 2013 Feb;296:141-8.

Noreña AJ, Farley BJ. Tinnitus-related neural activity: Theories of generation, propagation, and centralization. Hear Res. 2013 Jan;295:161-71.

Etchelecou MC, Coulet O, Derkenne R, Tomasi M, Noreña AJ. Temporary off-frequency listening after noise trauma. Hear Res. 2011 Dec;282(1-2):81-91.

Noreña AJ. An integrative model of tinnitus based on a central gain controlling neural sensitivity. Neurosci Biobehav Rev. 2011 Apr;35(5):1089-109.

Noreña AJ, Moffat G, Blanc JL, Pezard L, Cazals Y. Neural changes in the auditory cortex of awake guinea pigs after two tinnitus inducers: salicylate and acoustic trauma. Neuroscience. 2010 Apr 14;166(4):1194-209.

Montejo N, Blanc JL, Mahnoun Y, Brezun JM, Catz N, Norena A, Zennou-Azogui Y, Xerri C, Pezard L. Optimization of sensory stimulation for neuronal population activity. BMC Neurosci. 2010; 11(Suppl 1): P178.

Thai-Van H, Veuillet E, Norena A, Guiraud J, Collet L. Plasticity of tonotopic maps in humans: influence of hearing loss, hearing aids and cochlear implants. Acta Otolaryngol. 2010 Mar;130(3):333-7. 4.

Moffat G, Adjout K, Gallego S, Thai-Van H, Collet L, Noreña AJ. Effects of hearing aid fitting on the perceptual characteristics of tinnitus. Hear Res. 2009 Aug;254(1-2):82-91.

Gourévitch B, Norena A, Shaw G, Eggermont JJ. Spectro-temporal receptive fields in anesthetized cat primary auditory cortex are context dependent. Cerebral Cortex 2009 Jun;19(6):1448-61.

Noreña AJ, Gourévitch B, Pienkowski M, Shaw G, Eggermont JJ. Increasing spectrotemporal sound density reveals an octave-based organization in cat primary auditory cortex. J Neurosci. 2008 3;28(36):8885-96.

Thai-Van H, Micheyl C, Norena A, Veuillet E, Gabriel D, Collet L. Enhanced frequency discrimination in hearing-impaired individuals: A review of perceptual correlates of central neural plasticity induced by cochlear damage. Hear Res. 2007 Jun 9;

Guiraud J, Besle J, Arnold L, Boyle P, Giard MH, Bertrand O, Norena A, Truy E, Collet L. Evidence of a tonotopic organization of the auditory cortex in cochlear implant users. J Neurosci. 2007 Jul 18;27(29):7838-46.

Norena AJ and Chery-Croze S. Enriched acoustic environment rescales auditory sensitivity. Neuroreport 2007 Aug 6;18(12):1251-5.

Weisz N, Hartmann T, Dohrmann K, Schlee W, Norena A. High-frequency tinnitus without hearing loss does not mean absence of deafferentation. Hear Res. 2006.

Norena AJ, Gourevitch B, Aizawa N, Eggermont JJ. Spectrally enhanced acoustic environment disrupts frequency representation in cat auditory cortex. Nat Neurosci. 2006 Jul;9(7):932-9.

Norena AJ, Eggermont JJ. Enriched acoustic environment after noise trauma abolishes neural signs of tinnitus. Neuroreport. 2006 Apr 24;17(6):559-63.

Norena AJ, Eggermont JJ. Enriched acoustic environment after noise trauma reduces hearing loss and prevents cortical map reorganization. J Neurosci. 2005 Jan 19;25(3):699-705.

Tomita M, Norena AJ, Eggermont JJ. Effects of an acute acoustic trauma on the representation of a voice onset time continuum in cat primary auditory cortex. Hear Res. 2004 Jul;193(1-2):39-50.

Gabriel D, Veuillet E, Ragot R, Schwartz D, Ducorps A, Norena A, Durrant JD, Bonmartin A, Cotton F, Collet L. Effect of stimulus frequency and stimulation site on the N1m response of the human auditory cortex. Hear Res. 2004 Nov;197(1-2):55-64.

Cuny C, Norena A, El Massioui F, Chery-Croze S. Reduced attention shift in response to auditory changes in subjects with tinnitus. Audiol Neurootol. 2004 Sep-Oct;9(5):294-302.

Norena A, Eggermont JJ. Neural correlates of an auditory after-image in primary auditory cortex. J Assoc Res Otolaryngol. 2003 4:312-28.

Norena A, Eggermont JJ. Changes in spontaneous neural activity immediately after an acoustic trauma: implications for neural correlates of tinnitus. 2003 Hear Res 183: 137-53.

Norena A, Tomita M, Eggermont JJ. Neural changes in cat auditory cortex after transient pure-tone trauma. J. Neurophysiol 2003 90:2387-401.

Norena A, Micheyl C, Garnier S, Chéry-Croze S. Loudness changes associated with the perception of an auditory after-image. Int J Audiol. 2002 41:202-07.

Norena A, Eggermont JJ. Comparison between local field potentials and unit cluster activity in primary auditory cortex and anterior auditory field in the cat. Hear Res. 2002 166:202-13.

Norena A, Micheyl C, Durrant J, Chéry-Croze S, Collet L. Perceptual correlates of neural plasticity related to spontaneous otoacoustic emissions? Hear Res. 2002 171:66-71.

Norena A, Micheyl C, Chéry-Croze S, Collet L. Psychoacoustic characterization of the tinnitus spectrum: implications for the underlying mechanisms of tinnitus. Audiol Neurootol. 2002 7:358-69.

Thai-van H, Micheyl C, Norena A, Collet L. Local improvement in auditory frequency discrimination is associated with hearing-loss slope in subjects with cochlear damage. Brain 2002 125:524-37.

Norena A, Micheyl C, Chery-Croze S. An auditory negative after-image as a human model of tinnitus. Hear Res. 2000 149(1-2):24-32.

Norena A, Cransac H, Chery-Croze S. Towards an objectification by classification of tinnitus. Clin Neurophysiol. 1999 110(4):666-75.